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Numerous periodic and aperiodic dynamic states obtained in a model for hydrogen peroxide decomposition
in the presence of iodate and hydrogen ions (the Bray-Liebhafsky reaction) realized in an open reactor
(CSTR), where the flow rate was the control parameter, have been investigated numerically. Between two
Hopf bifurcation points, different simple and complex oscillations and different routes to chaos were observed.
In the region of the mixed-mode evolution of the system, the transitions between two successive mixed-
mode simple states are realized by period-doubling of the initial state leading to a chaotic window in which
the next dynamic state emerges mixed with the initial one. It appears in increasing proportions in concatenated
patterns until total domination. Thus, with increasing flow rate the period-doubling route to chaos was obtained,
whereas with decreasing flow rate the peak-adding route to chaos was obtained. Moreover, in very narrow
regions of flow rates, chaotic mixtures of mixed-mode patterns were observed. This evolution of patterns
repeats until the end of the mixed-mode region at high flow rates that corresponds to chaotic mixtures of one
large and many small amplitude oscillations. Starting from the reverse Hopf bifurcation point and decreasing
the flow rate, simple small amplitude sinusoidal oscillations were encountered and then the period-doubling
route to chaos. With a further decreasing flow rate, the mixed-mode oscillations emerge inside the chaotic
window.

Introduction

Modeling complex dynamic structures and investigating
modes of transition between them is a significant task with a
general application to all nonlinear processes irrespective of their
nature. Therefore, even though the focus of this study is on the
dynamics of one particular example, the Bray-Liebhafsky (BL)
reaction, the results obtained are of general relevance for other
dynamic systems showing similar complex dynamics.

In the reaction of hydrogen peroxide decomposition in the
presence of hydrogen and iodate ions (D), known as the Bray-
Liebhafsky reaction,

hydrogen peroxide decomposition is the result of two complex
pathways in which hydrogen peroxide acts as either a reducing
(R) or an oxidizing (O) agent:

The sum of reactions (R) and (O) gives reaction (D). When the
rates of these two pathways are equal, monotonic decomposition
of hydrogen peroxide is observed. Studying the kinetics of this
system, Bray discovered already in 19211 a narrow concentration
range where the rates of pathways (R) and (O) are not equal.
Under these conditions, pathways (R) and (O) dominate
alternately over one another resulting in a cascading consump-
tion of hydrogen peroxide and an oscillatory evolution of the
intermediates. The oscillatory dynamics of the BL reaction
has been studied extensively in batch reactors.1-23 However,
the complex oscillations, bursts and chaos, obtained in this
system when the reaction is realized in a continuously fed
well stirred tank reactor (CSTR), have been published only
recently.24,25

2H2O298
IO3

-, H+

2H2O + O2 (D)

2IO3
- + 2H+ + 5H2O2 f I2 + 5O2 + 6H2O (R)

I2 + 5H2O2 f 2IO3
- + 2H+ + 4H2O (O)
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The aim of this study is to determine whether the model that
was proposed by us11,26,27and optimized on the basis of results
obtained in a batch reactor can simulate the complex dynamics
of the BL reaction in an open reactor. Preliminary results were
encouraging.28

Model of the Bray-Liebhafsky Reaction

Already in 1921, Bray foundthat the reactions (R) and (O)
had to be complex and that the evolution of gaseous oxygen
from the system is not the source of oscillatory behavior of the
hydrogen peroxide decomposition. Evolution of gaseous oxygen
may alter the oscillations, but it is not crucial for their appear-
ing.29 He also concluded that the oscillatory evolution originates
from the complex chemistry between the hydrogen peroxide
and intermediate iodine species that appears in the reaction
system such as I-, HIO, and HIO2. Following his ideas, a model
of the mechanism of the overall process was proposed by one
of us11 and later augmented by one26 and two reactions.27 All
three variants of the model are successful in the simulations of
many phenomena in closed and open reactors26,27,30-35 because
the feedback loop is already included in the first model con-
sisting of only six reactions. However, more details of the
experimentally observed reaction dynamics can be explained
by the version having eight reactions. Our intention in this paper
is to see whether complex and chaotic oscillations found exper-
imentally in a CSTR could be simulated by the model given in
Table 1 consisting of the eight reactions (R1-R8), where three
of them are reversible, with the set of rate constants optimized
for batch conditions.27,32

In our previous studies,32 stoichiometric network analysis36

was used to identify the reactions (R1-R8) that contribute to
pathways (R) and (O), calculate the concentrations of the inter-
mediates in the pseudo-steady states and analyze the stability
of the steady states. The concentrations of iodate and hydrogen
ions are significantly larger than the concentrations of other
reactive species and can be considered as constants without
qualitatively affecting the results. (Extending the model with
two additional differential equations to account for the temporal
evolution of these two species does not alter the dynamic
structure of the system but only shifts the bifurcation points a
little with respect to the flow rate.28) Two external species
controlling the oscillations are H2O2 and I2. Essential internal
species are I-, HIO, HIO2, and I2O. Hence, the temporal evolu-
tion of the system is described by the following six differential
equations.

where [H2O2]in is the hydrogen peroxide concentration in the
input flow, j0 the specific flow rate (total volume flow divided
by the reactor volume), and

Numerical Calculations

Calculations were performed using the MATLAB program
package. The differential equations derived from the model were
integrated using the ode15s solver. The same results were
obtained using other numerical integration algorithms available
in MATLAB but required longer integration times. Relative and
absolute error tolerance values lower than 1× 10-10 and 1×
10-18, respectively, did not influence the results of numerical
integrations. Hence, smaller values, in this particular case 3×
10-14 and 1× 10-20, were adopted for the respective error toler-
ances. The Jacobian was calculated externally. Internal calcula-
tion gave the same results but occasionally required longer
calculation times.

To discriminate between distinct dynamic patterns and to
characterize them accurately, we have used different representa-
tions: time sequences, phase space portraits, Poincare´ sections,
return maps and power spectra. Poincare´ sections were also
efficient in verifying that the transients had died out and all the
presented results describe permanent dynamic states. Power
spectra were calculated using the fast Fourier transform routine
in MATLAB “fft” function or directly with the “psd” function
using Welch’s method. The clearer spectra were usually obtained
with the “psd” function and a Hamming window (see MATLAB
toolkit help file and www.mathworks.com).

Numerical Results

To establish if complex and chaotic oscillations may be
reproduced by the model (R1-R8) extended to account for the
flow of the species in an isothermal CSTR, numerous numerical
simulations usingj0 as the control parameter were performed.
The iodate and acid concentrations were maintained constant
and equal to the values used in our former simulations,28 [IO3

-]
) 0.0474 and [H+] ) 0.0958 mol/dm3, and the hydrogen

TABLE 1: Model of the Bray -Liebhafsky Reaction

reactions rate constantsa no.

IO3
- + I- + 2 H+ h HIO + HIO2 k1 ) 3.18× 105

k-1 ) 7.91× 107
R1, R-1

HIO2 + I- + H+ f I2O + H2O k2 ) 5.0× 1011 R2

I2O + H2O h 2HIO k3 ) 5.0× 103

k-3 ) 3.15× 108
R3, R-3

HIO + I- + H+ h I2 + H2O k4 ) 3.0× 1011

k-4 ) 4.5
R4, R-4

HIO + H2O2 f I- + H+ + O2 + H2O k5 ) 1.20× 104 +
3.0× 104[H+]

R5

I2O + H2O2 f HIO + HIO2 k6 ) 5.0× 105 R6

HIO2 + H2O2 f IO3
- + H+ + H2O k7 ) 2.0× 103 R7

IO3
- + H+ + H2O2 f HIO2 + O2 + H2O k8 ) 9.5× 10-4 +

3.92× 10-2[H+]
R8

a We keep the units mol× dm-3 and min used in the previous
papers.27,32

d[H2O2]/dt ) -r5 - r6 - r7 - r8 + j0([H2O2]in - [H2O2])

d[I2]/dt ) r4 - j0[I 2]

d[I-]/dt ) -r1 - r2 - r4 + r5 - j0[I
-]

d[HIO]/dt ) r1 + 2r3 - r4 - r5 + r6 - j0[HIO]

d[HIO2]/dt ) r1 - r2 + r6 - r7 + r8 - j0[HIO2]

d[I2O]/dt ) r2 - r3 - r6 - j0[I 2O]

r1 ) k1[IO3
-][I -][H+]2 - k-1[HIO][HIO 2]

r2 ) k2[HIO2][I
-][H+]

r3 ) k3[I 2O] - k-3[HIO]2

r4 ) k4[HIO][I -] - k-4[I 2]/[H
+]

r5 ) k5[HIO][H 2O2]

r6 ) k6[I 2O][H2O2]

r7 ) k7[HIO2][H2O2]

r8 ) k8[IO3
-] [H2O2]
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peroxide concentration in the input flow was [H2O2]in ) 0.155
mol/dm3. The results are summarized in Table 2.

At low j0 values, only stable steady states were observed. A
supercritical Hopf bifurcation occurs betweenj0 ) 0.299× 10-3

and 0.300× 10-3 min-1 as the stable steady-state becomes

unstable and surrounded by a stable limit cycle. Afterward, the
system exhibits simple oscillations with increasing amplitudes
as the limit cycle grows and transforms acquiring a shape typical
for relaxation oscillations. Atj0 ) 4.8237× 10-3 min-1 a
period-doubling bifurcation occurs. This is practically impossible
to notice in the time series (Figure 1a) but is evident looking at
the projections of the trajectories from the 6D phase space onto
a 2D subspace. Figure 1b shows that two successive oscillations
are different. A Poincare´ section for [I-] ) 4 × 10-8 mol/dm3

gives exactly two intersection points at each side of the cycle.
The power spectrum in Figure 1c shows a main peak at the
frequency 0.110 min-1, corresponding to one oscillation, a
smaller peak at half this frequency, corresponding to the period-2
cycle, and their harmonics. When the flow rate is further
increased, a period-doubling cascade was observed. As in the
previous case, these bifurcations are not easily observable in
the time series (Figure 2a). Very small differences with simple

TABLE 2: Summary of the Numerical Results

j0 range or value
(10-3 min-1) patterna Mb kM

c comments

<0.299 stable steady state
0.300-4.8236 10 simple large amplitude

oscillations
4.8237-4.82455 (10)2 period 2, Figure 1
4.82456-4.82476 (10)2

p 0 sequence of period-doubling
4.82480-4.82592 chaos Figure 2
4.82593-4.826 61 0.167 2.69 smallest observedM value
4.8270-4.8291 41 0.250 3.79
4.82915-4.82923 (41)2

p sequence of period-doubling
4.82925-4.8296 chaos
4.8297-4.8301 41 31 0.286 3.75 Figure 3a
4.831 41 (31)3 0.308 3.78
4.8312-4.8316 chaos
4.8317-4.8360 31 0.333 3.97
4.8361-4.8364 (31)2

p sequence of period-doubling
4.8366-4.837 chaos
4.838-4.8421 31 (21)n sequence of peak-adding
4.8422-4.8495 21 0.500 3.95
4.8497-4.8502 (21)2

p sequence of period-doubling
4.8503 chaos pattern (21)n without periodicity
4.8504 chaos mixture of 21 and 11

4.8505-4.852 (21)n 11

4.855 21 11 0.667 3.63
4.860-4.8691 21 (11)n sequence of peak-adding,

Figure 3b
4.8692-4.8823 11 1.00 3.94 longest step in devil’s staircase,

Figure 5a,b
4.8825-4.88315 (11)2

p 1.00 sequence of period-doubling,
Figure 5c,d

4.8832-4.8848 chaos Figure 5e,f
4.8849-4.886 (11)3 12 1.250 3.66
4.890-4.906 complicated periodic mixtures

of 11 and 12

4.907 chaos mixture of 11(12)4 and 11(12)5

4.908-4.9110 11 (12)n sequence of peak-adding
4.9111-4.9195 12 2.00 3.85
4.9196-4.92012 (12)2

p sequence of period-doubling
4.92015-4.9202 chaos pattern (12)n without periodicity
4.9210-4.9225 chaos mixture of 12 and 13

4.923-4.924 (12)2 13 2.333 3.79
4.925 chaos mixture of 12 and 13

4.926 12(1213)3 2.429 3.78
4.930 12 13 2.500 3.68
4.933-4.939 12 (13)n sequence of peak-adding
4.940-4.945 13 3.00 3.85
4.946-4.9463 (13)2

p sequence of period-doubling
4.9464-4.9466 chaos
4.947 (13)3 14 3.250 3.80
4.950-4.960 complicated periodic mixtures

of 13 and 14

4.961-4.965 14 4.00 3.88
4.966-4.96608 (14)2

p sequence of period-doubling
4.967 chaos mixture of 14 and 15

4.968 (14)2 15 4.333 3.83
4.977-4.981 15 5.00 3.91
4.990 16 6.00 3.93 Figure 3c
5.004-5.0810 1n n increases from 7 to 35 with

narrow chaotic windows
5.0812-5.0816 chaos and crisis at about

5.0815, Figure 4
5.0817-5.082 (01)2

p d sequence of period-halving
5.085-5.1196 01 small limit cycle

>5.120 stable steady state

a ls represents a sequence ofl consecutive large amplitude oscillations
followed bysconsecutive small ones.b Ratio between the total number
Sof small amplitude oscillations and the total numberL of large ones.
The firing numbers are equal toM/(1 + M). c See text.d In this casep
decreases with flow rate.

Figure 1. Period-2 oscillations forj0 ) 4.824× 10-3 min-1: time
series (a), 2D view (b), and power spectrum (c).
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oscillations appear in some time series but the trajectories remain
so close to that found at lowerj0 values that only a careful exam-
ination of the numerical results reveals the bifurcations. Thej0
values where the period 2n appear, withn ) 1-5, give succes-
sive Feigenbaum scaling numbers38 equal to 5.6, 5.3, and 4.7
near to the asymptotical value 4.669. The calculated accumula-
tion point38 is atj0 ) 4.82479× 10-3 min-1 and, actually, chaos
is numerically observed from this value. The well-separated
curves in Figure 1b are replaced by a continuous strip in Figure
2b. This indication of chaos is confirmed by the power spectrum
given in Figure 2c. Peaks at the frequency 0.110 min-1 and at
its higher harmonics emerge from a noisy background. The
inverse of this frequency is the mean time to complete a turn
of the attractor shown in Figure 2b and come back atap-
proximatelythe same point (a chaotic trajectory never comes
back at exactly the same point). The background is noisy
because the actual trajectory wanders chaotically around a mean
curve reminiscent of the former limit cycle. Argould et al.37

have observed a similar behavior in the Belousov-Zhabotinsky

reaction and called it “microscopic chaos”, because the chaotic
attractor remains located in a tiny region of the phase space.

The domain ofj0 values giving chaos is very narrow and at
j0 ) 4.825 93× 10-3 min-1 the oscillations are again periodic.
The example given in Figure 3a shows that these periodic oscil-
lations differ from the ones obtained at lowerj0 values, because
they are now separated by small oscillations. The large ampli-
tude oscillations are of the relaxation type whereas the small
ones resemble modulated quasi-sinusoidal waves. The ampli-
tudes of the large oscillations in a pattern are close to one
another whereas the amplitudes of the small ones are different
and depend on their number between two large oscillations. We
describe the pattern of these mixed-mode oscillations using the
notation of Maselko and Swinney.39 The symboll s in a pattern
denotes that a sequence ofl consecutive large amplitude oscil-
lations is followed bys consecutive small ones. For example,
one period in Figure 3a is represented by [41 31] and in Figure
3b by [21 (11)3]. The notation (11)3 means that we have three
successive sequences 11, which must be different in one pattern

Figure 2. Chaos forj0 ) 4.825× 10-3 min-1: time series (a), 2D
view (b), and power spectrum (c).

Figure 3. Time series of mixed-mode oscillations forj0 ) 4.830×
10-3 (a), 4.863× 10-3 (b), and 4.990× 10-3 min-1 (c).
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because an oscillation identical to a former one indicates that
the trajectory closes ending a period. The number of consecutive
large and small oscillations should not be confused with the
total number of large (L) and small (S) oscillations in a period.
For example, the pattern [21 (11)3] givesL ) 5 andS) 4. Values
of the mean number of small oscillations in a period,M ) S/L,
are included in Table 2.M increases withj0, as discussed in
details hereafter, until a new bifurcation occurs at aboutj0 )
5.0811× 10-3 min-1. The periodic pattern [135] at j0 ) 5.0810
× 10-3 min-1 is replaced by a chaotic attractor shown in Figure
4a,b for j0 ) 5.0812× 10-3 min-1. When j0 increases, the
amplitude of the large oscillations does not change but the mean
number of small amplitude oscillations between two large ones
increases. It fluctuates from 35 to 40 atj0 ) 5.0812× 10-3

min-1 and from 35 to about 130 atj0 ) 5.0815× 10-3 min-1,
without any regularity. Nearj0 ) 5.0816× 10-3 min-1 a new
phenomenon occurs. The dynamic remains chaotic but the large
amplitude oscillations disappear, leaving a small attractor shown
in Figure 4c,d. This sudden change of the size of the attractor
suggests that we have a phenomenon known in the literature as
a crisis.38 The subsequent evolution is the reverse of a classical
one: periodic oscillations in a sequence of period-halving, a
small limit cycle, a reverse Hopf bifurcation nearj0 ) 5.120×
10-3 min-1 and a stable steady state.

We discuss now the evolution of the mixed-mode patterns
when j0 increases. At the beginning, the patterns show several
large amplitude oscillations separated by only one small ampli-
tude oscillation [l1]. The number of large oscillations decreases
until the state [11] is reached. At higherj0 values, the patterns
show only one large oscillation and several small ones [1s]
(Figure 3c). The region of mixed-mode oscillations ends at the
bifurcation discussed before at aboutj0 ) 5.0811× 10-3 min-1.
Between two simple patterns [l1] and [(l - 1)1] or [1s] and [1s+1],
complex patterns formed by their concatenation [(l1)((l - 1)1)m]

or [(1s)n(1s+1)m] are obtained. In the periodic dynamic states we
have never found concatenation of patterns [l1] and [(l - x)1]
or [1s] and [1s+x], wherex is an integer larger than 1. Before
the states [l1] and [1s], sequences of peak-adding [(l + 1)1(l1)n]
and [1s-1(1s)n] occur, wheren seems to go to infinity, whereas
after the [l1] and [1s] dynamic states, sequences corresponding
to period-doublings, [(l1)2

p]and [(1s)2
p], wherep ) 1, 2, 3, ...,

leading to chaotic windows are observed (Table 2). [Scott (ref
40, p 88) has pointed out that the term peak-adding is more
appropriate than period-adding because “...the sequence sees
an increase in the number of individual excursions that go to
form a total repeating unit...”]. We have carefully studied this
period-doubling route to chaos by making 2D projections and
Poincare´ sections and by calculating the corresponding power
spectra. The case [11] is illustrated in Figure 5. The difference
between the power spectra in Figure 5d,f forj0 ) 4.8831×
10-3 and 4.8835× 10-3 min-1 is striking. In the first case, the
pattern is [(11)4] and we observe only a main peak atf ) 0.0865
min-1, corresponding to one oscillation, a peak atf/4, corre-
sponding to a period, and their harmonics. In the second case,
we still see the frequency 0.0865 min-1, because the trajectory
remains approximately in the same region of the phase space
(we have microscopic chaos), but the sharp peaks are replaced
by noise. The number of small amplitude oscillations between
two large ones is distributed randomly between 1 and 2 with
sometimes two consecutive large amplitude oscillations. No
hysteresis was found at the borders of the chaotic windows. In
the region of the mixed-mode oscillations, beside the chaotic
windows that appear through period-doubling sequences, there
are also chaotic windows consisting of chaotic mixtures of
mixed-mode patterns.

In summary, by increasingj0, we observe different kinds of
simple, complex and chaotic oscillations between two stable
steady states. On both borders between stable and unstable

Figure 4. Bifurcation from a chaotic mixture of large and small amplitude oscillations atj0 ) 5.0812× 10-3 min-1 (a, b) to a small chaotic
attractor atj0 ) 5.0816× 10-3 min-1 (c, d).
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steady states, there is a supercritical Hopf bifurcation. The gen-
eral scheme of the evolution is the following.

However, period-doubling cascades and chaotic windows inside
the region of mixed-mode oscillations break this simple scenario.
Moreover, there are differences between the two borders of this
region. At low flow rates, the simple small amplitude oscillations
emerging from the Hopf bifurcation quickly increase to large
amplitude relaxation ones and the small amplitude oscillations
appear inside the chaotic region. At high flow rates, the large
amplitude oscillations disappear inside the chaotic region
andonly small and quasi-sinusoidal oscillations between this
region and the reverse Hopf bifurcation were found. Similar
bifurcations were observed with different [H2O2]in but occur at
lower j0 values when [H2O2]in is higher.

Firing Numbers

The ratioF ) S/(L + S), called the firing number,39,41-43 is
related to the mean number of small oscillations given in Table
2 by F ) M/(1 + M). Figure 6 shows the increase ofF with j0
and plateaus whereF does not change over a range ofj0 values.
Our results agree with the expected behavior ofF, similar to
the behavior of winding numbers: the plateaus are larger when
the values of the denominatorL + S are smaller. Hence, the
largest plateau is obtained forF ) 1/2, the next ones forF ) 1/3
and 2/3 and so on. As the firing number can be equal to any
rational fraction, there is an infinite number of such plateaus
and they form a so-called devil’s staircase.38,39,41-43 In the
investigated system, chaotic windows at the end of the stairs
interrupt the devil’s staircase. These windows are preceded by
period-doubling sequences and cover the beginning of the sub-
sequent peak-adding evolutions. Also, both ends of the staircase
(F ) 0 andF ) 1) are missing. The smallest observed value is
F ) 1/7 for the pattern [61] when j0 ) 4.825 93× 10-3 min-1.

Figure 5. Time series and power spectra showing a period-doubling sequence leading to chaos:j0 ) 4.8800× 10-3 min-1, pattern [11] (a, b); j0
) 4.8831× 10-3 min-1, pattern [(11)4] (c, d); j0 ) 4.8835× 10-3 min-1, chaos (e, f).

Hopf f period-doubling cascadef chaosf
mixed-mode oscillationsf chaosf

period-halving cascadef Hopf
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Below this value, betweenj0 ) 4.825 80× 10-3 and 4.825 92
× 10-3 min-1, the motion is chaotic as in Figure 2 but with
added small amplitude oscillations announcing the mixed-mode
regime. The largest observed value isF ) 35/36 for the pattern
[135] when j0 ) 5.0810 × 10-3 min-1. Above this value,
betweenj0 ) 5.0812× 10-3 and 5.0816× 10-3 min-1, the
motion is chaotic.

Denoting byj0,M the smallest value ofj0 on a plateau,jmin

the value ofj0 such thatF ) 0, andjmax the value ofj0 such
that F ) 1, we have found thatF and j0,M are related by the
following simple relation

The valuesjmin ) 4.8084× 10-3 min-1 and jmax ) 5.1089×
10-3 min-1 are determined by extrapolation ofj0 to F ) 0 and
F ) 1, respectively.kM is an empirical constant given in Table
2. The constancy ofkM is noteworthy and suggests some as yet
unrevealed theoretical explanation.

Discussion and Conclusions

The examined model for the BL reaction simulates a number
of periodic and aperiodic dynamic states under CSTR condi-
tions: stable steady states, supercritical Hopf bifurcation, simple
oscillations changing their form from small amplitude quasi-
sinusoidal oscillations to large amplitude relaxation ones,
successive period-doublings ending with chaos, peak-adding
with dynamic states changing from several large amplitude
oscillations with one small amplitude oscillation to states with
single large amplitude oscillations separated by small amplitude
modulated waves, period-halving before small amplitude sinu-
soidal oscillations and a reverse Hopf bifurcation point at the
end of the domain where the steady state is unstable. Within
this domain, transition from a former to the following simple
mixed-mode state occurs through period-doublings, leading
to a chaotic window in which the subsequent dynamic state
emerges mixed with the preceding one. Thus we have the
period-doubling route to chaos by increasing the flow rate and
the peak-adding route to the same state by increasing the resi-
dence time. For example, in the region with several large and
only one small amplitude oscillations the following sequence
of dynamic states was observed

or, in the region with one large amplitude and several small
amplitude oscillations,

Moreover, in very narrow regions of flow rates, chaotic mixtures
of mixed-mode patterns have been found (denoted byl in Fig-
ure 6). This complex evolution of the system is more obvious
in dynamic states with smalls and l values, that is, for firing
numbers about 0.5. For firing numbers close to 0 and 1, the
different dynamic states are practically merged to one another
and very difficult for complete numerical illustration.

The number of chaotic windows depends on the number of
simple [ls] dynamic states. Although this number would go to
infinity in the complete region of mixed-mode oscillations, the
number of chaotic windows is finite because the beginning and
the end of the region of mixed-mode oscillations are covered
by chaotic regions (in the simulations we obtained only states
from [61] to [135]). All these states cannot be found numerically
because some of them would be realized in very narrow regions
of flow rates that are affected by the precision of the numerical
calculations.

The mixed-mode region ends at high flow rates corresponding
to chaotic states characterized by a mixture of one large oscil-
lation followed by trains of small amplitude oscillationsswe
observedsvalues up to 130 in this chaotic region. Starting from
the reverse Hopf bifurcation point and going in the opposite
direction, i.e., decreasing the flow rate, we first encounter simple
small amplitude sinusoidal oscillations and then a period-
doubling route to chaos. When the flow rate is decreased further,
mixed-mode oscillations emerge through a dynamic state with
one large and numerous small amplitude oscillations. This
progression is a mirrored image of the previously explained
evolution for increasing the specific flow rate starting with very
low flows.

The discussed dynamic states together with numerous other
phenomena found in real experiments conducted under batch
and CSTR conditions are simulated by the proposed model
for the BL reaction with the rate constants listed in Table
1.24-27,30,31,33-35 Under batch conditions the correlation between
modeled and experimentally measured concentrations, duration
of the oscillatory cascade, length of the smooth evolution pre-
ceding the oscillations, period of the oscillations, reinstatement
of the oscillatory state after dilution and others were exam-
ined. In these cases even quantitative agreement is achieved.
In the CSTR, only qualitative relations between experimentally
observed and modeled phenomena, Hopf bifurcations, simple
relaxation oscillations, mixed-mode oscillations and chaotic
windows, were found. It is particularly important that these
dynamic states can be simulated by the proposed model because
it does not include any direct autocatalytic or auto-inhibition
step in the form A+ xB f (x ( 1)B that would induce non-
linearity. Here, the main feedback comes from the competition
between reactions R5 and R6. Hydrogen peroxide acts as a
reducing agent in reaction R5 with a rate proportional to [HIO]
and as an oxidizing agent in reaction R6 with a rate proportional

Figure 6. Devil’s staircase in the region of complex oscillations (b),
chaos after a period-doubling sequence (|) and chaos breaking periodic
mixed-mode sequences (l).
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[(l1)3(l - 1)1] f [(l1)2(l - 1)1] f [l1(l - 1)1] f

[l1((l - 1)1)2] f [l1((l - 1)1)3] f ... f [(l - 1)1]

[1s] f [(1s)2] f [(1s)4] f [(1s)8] f ... f chaosf ... f

[(1s)3 1s+1] f [(1s)2 1s+1] f [1s 1s+1] f [1s (1s+1)2] f

[1s (1s+1)3] f ... f [1s+1]
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to [I2O], that is, with reaction R-3, proportional to the square
of [HIO]. An increase of [HIO] favors the oxidation (R6) with
respect to the reduction (R5), causing in this way a further
increase of [HIO].44 Moreover, the analyzed model is based
exclusively on liquid-phase reactions and does not account for
the escape of volatile and gaseous species from the liquid phase
that can be an additional source of nonlinearity.

The major discrepancy between the model predictions and
the real experiments under CSTR conditions24,25 is reflected in
the form of mixed-mode oscillations. Namely, in numerical
simulations small amplitude oscillations in the mixed-mode
region emerge at the end of the reduction pathway whereas they
are observed experimentally at the end of the oxidation pathway.
This suggests that contributions of the pathways (R) and (O)
that exist in the model should be rearranged by adjusting the
proposed set of rate constants and, eventually, the model would
be corrected. For this purpose, besides the present knowledge,
more information about the individual reactions between the
iodine compounds45,46 and about the subsets (R) and (O)47 is
required.

The behaviors observed by analyzing the model for the BL
reaction characterized by peak-adding evolution from [l1] to [1s]
and mixed-mode regions with patterns formed by concatenations
between successive simple patterns are globally similar but
different from that obtained experimentally in the Belousov-
Zhabotinsky reaction37,39,40,48or numerically in this and other
systems.41,48-52 Chaotic windows appearing through period-
doubling and disappearing through peak-adding sequences were
not observed in these systems. Hence, the examinations of the
model of the BL reaction together with new obtained results
are of general importance for modeling and predicting the
behavior of other oscillatory processes.
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(14) Anić, S.; Stanisavljev, D.; Krnajski Belovljev, G.; Kolar-Anic´, Lj.
Ber Bunsen-Ges. Phys. Chem.1989, 93, 488.

(15) Schmitz, G. InSpatial inhomogeneities and transient behaViour in
chemical kinetics; Gray, P., Nicolis, G., Baras, F., Borkmans, P., Scott, S.
K., Eds.; Manchester University Press: Manchester, U.K., 1990; p 666.
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7576.
(34) Kissimonova´, K.; Valent, I.; Adamcˇı́ková, L.; Ševčı́k, P. Chem.
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